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Non-equilibrium solidification of the molten metal droplets
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Abstract

A measuring method for the kinetic coefficient and activation energy of molten metals has been developed. This method is based on a
splat thickness measurement of a molten metal droplet deposited on a polished metal substrate. An analytical solution of a non-equi-
librium crystallization of a molten metal droplet impacting on a solid substrate relates the thickness of the splat to the kinetic coefficient.
The dimensionless number showing the departure of the equilibrium phase transition from the non-equilibrium transition follows from
the theory. The predicted values of the kinetic coefficient and activation energy agree well with the existing literature data.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Industrial molten droplet-based applications, such as,
thermal spray deposition and solder jet printing, are char-
acterized by the wide gamut of processed materials from
fusible metals to refractory oxides and very wide range of
the droplet sizes (5–150 lm) and impact velocities (1–
100 m/s). This in turn results in a wide range of cooling
rates from 103 up to 108 K/s and, correspondingly, a rich
diversity of the phase transition scenarios from equilibrium
solidification to spontaneous crystallization and metallic
glasses formation. Most theoretical studies [1–3] about
molten droplet impact on cold substrates under conditions
similar to thermal spray deposition have been conducted
based on a model of equilibrium solidification. It is worthy
of note here that at high rates of cooling molten droplets
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can solidify at considerable undercooling which can attain
100–300 K. In this case, this model of equilibrium crystal-
lization fails to describe properly the dynamics of phase
transition and more complicated models, such as the
non-equilibrium crystallization [4–6] or nucleation-con-
trolled solidification [7–11] have to be used. At very high
cooling rates and in thin molten metal layers transition
melt – metallic glasses becomes possible. As shown in
[12,13], the critical layer thickness at which the molten
metal becomes amorphous is equal to 0.015 lm for molten
Al on Cu substrate and 0.03 lm for molten Ni on Cu sub-
strate. Thus, at solidification of relatively thick layers, the
conditions of equilibrium crystallization described by the
Stefan model may be realized. As the thickness of a layer
decreases, mechanisms of equilibrium and non-equilibrium
solidification begin to compete. Here, however, the follow-
ing fact should to be noted. The degree of departure of a
solidification process (due to undercooling at the front of
crystallization) from the equilibrium one depends not only
on the thickness of the cooled layer, but also on external
conditions, the kinetic and thermophysical properties of
the melt and substrate. In [6] it has been shown that for
molten metal droplets impacting on a substrate with
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Nomenclature

a thermal diffusivity (m2 s�1) and radius of a
spherical crystal (m)

ac radius of a critical nucleus (m)
c specific heat (J kg�1 K�1)
da diameter of the atom (m)
d diameter of the droplet (m)
DL coefficient of diffusion (m�2 s�1)
D0 pre-exponential factor (m�2 s�1), D0 ¼ d2

a

kT m=h
Fo Fourier number, Fo ¼ aðsÞd t=d2

Fo� dimensionless time of the droplet complete
solidification

E energy of activation (J atom�1)
hp Planck constant (J s), 6.6256 � 10�34

h height of the splat (m)
H dimensionless height of the splat, H ¼ h=d
k Boltzmann constant (J K�1), 1.3806 � 10�23

K kinetic coefficient (m s�1 K�1)
Ke relative thermal activity, Ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðsÞ

d
cðsÞ

d
qðsÞ

d

kscsqs

r

Ku Kutateladze number, L=ðcðsÞd T mÞ
L latent heat of melting (solidification) (J kg�1)
La latent heat of melting per one atom (molecule)

(J atom�1)
LV volumetric latent heat of solidification (J m�3),

LV ¼ qL
Leff effective dimensionless heat of melting,

Leff ¼ Kuþ kðl; sÞ
d NuR

n number of atoms (molecules) per unit volume
(m�1)

Nu Nusselt number, Nu ¼ bd=kðlÞd
Pe Peclet number, Pe ¼ Ud=aðlÞd
q heat flux (W m�2)
r radial coordinate (m)
R ratio of diffusive and kinetic velocities,

R ¼ aðsÞd =ðdKT mÞ
t time (s)
t* time of the droplet complete solidification

Tm melting temperature (K)
DT undercooling of the melt, T m � T
u z-component of the velocity of fluid (m s�1)
v velocity of the front of phase transition (m s�1)
U drop impact velocity (m s�1)
W dimensionless energy of activation, W ¼ E=kT m

z axial coordinate (m)
za instantaneous coordinate of the droplet apex

(m)
Z dimensionless axial coordinate

Greek symbols

a coefficient (s�1), U=ð2dÞ
b heat transfer coefficient (W m�2 K�1)
c root of transcendental equation
g self-similar variable, g ¼ zð2a=aÞ1=2

k thermal conductivity (W m1 K�1)
h dimensionless temperature
q density (kg m�3)
s dimensionless time, s ¼ 2at
f instantaneous coordinate of the front of phase

transition (m)
R dimensionless coordinate of the front of phase

transition
X criterion of the phase transition, b=ðLVKÞ

Subscripts

d refers to droplet
eq refers to equilibrium solidification
n refers to non-equilibrium solidification
f refers to the front of phase transition
s refers to substrate

Superscripts
l refers to liquid phase
s refers to solid phase
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conditions similar to thermal spraying, solidification can
follow both equilibrium and non-equilibrium mechanisms.
Therefore, it is advisable to determine the criterion for pre-
dicting a priory the scenario of the phase transition.
Another important issue is the evaluation of the kinetic
coefficient K representing the proportionality constant
between crystal growth velocity and undercooling. Usually,
the value of the kinetic coefficient is estimated from ther-
mophysical data, but these estimates are prone to the gross
uncertainty. For example, Clyne [7] gives K ¼ 0:012 for
molten nickel whereas Regel and Glazov [14] and Zhang
et al. [5] give K = 0.005 and K = 0.85, respectively. There-
fore, another goal of this study is to develop a theoretical
model which can be used as the basis for an experimental
measurement of the activation energy and kinetic coeffi-
cient of molten metals.
2. Statement of the problem

2.1. Criterion of the phase transition scenario

It is well known that the principal difference between
equilibrium (Stefan problem) and non-equilibrium crystal-
lizations is the presence of undercooling DT f ¼ T m � T f at
an interface liquid/solid. In this case the interface velocity
for liquid metals is determined as

v ¼ KDT f ; ð1Þ
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where K is the kinetic coefficient which can be considered
as a constant at small values of DT f .

At the solid–liquid interface, where the change of state
occurs, an energy balance is maintained:

qLu ¼ ½q�f ; ð2Þ

where ½q�f is the jump of heat fluxes at the front of phase
transition.

In the case of equilibrium phase transition DT f ¼ 0,
therefore Eq. (1) degenerates and only the equation of
energy balance (2) controls the dynamics of phase transi-
tion. However, we can formally consider an equilibrium
phase transition as a non-equilibrium one with K !1
and DT f ! 0, so that the following limit yields a finite equi-
librium velocity of the front:

veq ¼ lim
DT!0
K!1

KDT f : ð3Þ

Furthermore, the rate of the undercooling DT f diminu-
tion in the non-equilibrium case depends on the latent heat
of solidification L, the convective heat transfer coefficient b
at the front of phase transition, and the kinetic coefficient
K. If, instead of L, one chooses the volumetric latent heat
LV ¼ qL, then there exists only one dimensionless combina-
tion X of these three parameters:

X ¼ b=ðLVKÞ: ð4Þ

From Eqs. (3) and (4) an important conclusion can be
drawn that the condition X� 1 corresponds to the case
of equilibrium solidification. Consequently, X may serve
as a criterion predicting a priory the scenario of the phase
transition (equilibrium or non-equilibrium).
2.2. Model of the non-equilibrium droplet crystallization

Let us consider a molten metal droplet of diameter d and
velocity U at the melting temperature Tm impinging per-
pendicularly on a cold, flat, and rigid surface. Also assume
that at the melt/substrate interface at z ¼ 0 ideal contact is
realized and the thermophysical properties of the solid and
liquid phases are constant. At the instant t ¼ 0, when drop-
let comes into contact with surface, the front of the phase
transition fðt; rÞ starts to move in the positive z-axis direc-
tion with the speed dfðt; rÞ=dt ¼ f ðDT Þ toward to the apex
zaðtÞ of the spreading droplet, thereby the delay time of
nucleation is set to zero. As shown later, these assumptions
correspond to experimental conditions. For metal melts
f ðDT Þ ¼ KDT , hence an equation of interface motion takes
the form

dfðt; rÞ=dt ¼ KDT ; ð5Þ

where K is the kinetic coefficient which can be considered
constant at small overcooling. Then the time t* required
for the droplet complete crystallization can be found from
this equation

fðt�; 0Þ ¼ f0ðt�Þ ¼ zaðt�Þ: ð6Þ
The final shape of the splat is a flat disk with the con-
stant thickness over the splat radius; therefore it is enough
to determine the splat thickness only in one point. The sim-
plest way is to formulate the problem for the drop’s axis of
symmetry ðr ¼ 0Þ as was done in [2] for the case of equilib-
rium droplet solidification. Then, the governing equations
are described as follows:

otT s ¼ asozzT s at �1 < z < 0; ð7Þ
otT

ðsÞ
d ¼ aðsÞd ozzT

ðsÞ
d at 0 < z < f0ðtÞ: ð8Þ

At the solid phase/substrate z ¼ 0 the fourth-kind bound-
ary conditions are maintained:

T sðt; 0Þ ¼ T ðsÞd ðt; 0Þ; ksðozT sÞz¼0 ¼ kðsÞd ðozT
ðsÞ
d Þz¼0: ð9Þ

At the solid–liquid front of phase transition z ¼ f0ðtÞ the
energy balance can be written as follows:

kðsÞd ðozT
ðsÞ
d Þz¼10ðtÞ ¼ qðsÞd L

df0ðtÞ
dt
þ bmðT m � T fÞ; ð10Þ

where Tf is the temperature at the front of crystallization,
bm is the mean heat transfer coefficient.

Including the boundary condition

T sðt;�1Þ ¼ T s0 ð11Þ

closes the statement of the problem.
Introducing the following dimensionless variables

Z ¼ z=d; Fo ¼ aðsÞd t=d2, h ¼ T=T m, the governing equations
(5), (7)–(11) can be rewritten as follows:

ohs

oFo
¼ as;d

o2hs

oZ2
; ð12Þ

ohd

oFo
¼ o

2hd

oZ2
; ð13Þ

hsð0; FoÞ ¼ hdð0; FoÞ; ks;dðohs=oZÞZ¼0 ¼ ðohd=oZÞZ¼0; ð14Þ

hf ¼ 1� R
dR
dFo

; ð15Þ

ohd

oZ

����
Z¼R

¼ Leff

dR
dFo

: ð16Þ

Here R ¼ aðsÞd =ðdKT mÞ is the diffusive and kinetic veloci-
ties ratio, Ku ¼ L=ðcðsÞd T mÞ is the Kutateladze number,
Nu ¼ bmd=kðlÞd is the Nusselt number, Leff ¼ Kuþ kðl;sÞd NuR
is the effective latent heat, ks;d ¼ ks=k

ðsÞ
d ; as;d ¼ as=aðsÞd ;

kðl;sÞd ¼ kðlÞd =k
ðsÞ
d ;R ¼ f0=d.

An analytical solution of Eqs. (11)–(16) can be found by
the method given in Lyubov [15]. Omitting intermediate
cumbersome mathematics, the instantaneous dimensionless
coordinate of the front of phase transition R is determined
by the expression

R ¼ 2cFo1=2; ð17Þ

where the constant c is the root of the following character-
istic equation

1� hs0

Kuþ kðl;sÞd NuR
¼

ffiffiffi
p
p

c½Ke þ erfðcÞ�ec2

: ð18Þ
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Here Ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðsÞ

d
cðsÞ

d
qðsÞ

d

kscsqs

r
is the relative heat activity,

hs0 ¼ T s0=T m.
From Eq. (18) it follows that the above-introduced

dimensionless number X does characterize the impact of
kinetics itself on the process of crystallization

X ¼ kðl;sÞd NuR=Ku ¼ bm=ðLVKÞ; ð19Þ

where LV ¼ qðsÞd L is the volumetric latent heat.
Accounting for Eq. (19), Eq. (18) becomes

1� hs0

Kuð1þ XÞ ¼
ffiffiffi
p
p

c½Ke þ erfðcÞ�ec2

: ð20Þ

According to condition (3) K !1 at equilibrium crystal-
lization, correspondingly, X becomes infinitesimally small,
so that, it can be neglected in comparison to unity in Eq.
(20). In this case, the dynamics of crystallization is deter-
mined solely by the criterion of the equilibrium crystalliza-
tion Ku. At finite X-values, the phase transition depends
essentially on the kinetics.

The height of the splat can be determined from the
model. The apex of the spreading droplet keeps the initial
droplet impact velocity U during the considered time inter-
val [16]. Then, by virtue of Eqs. (6) and (17), the equation
determining the time of the droplet complete solidification
takes the form

1� dPeFo ¼ 2cFo1=2; ð21Þ

where d ¼ aðl;sÞd ; Pe ¼ Ud=aðlÞd is the Peclet number, c is the
root of Eq. (20), aðl;sÞd ¼ aðlÞd =aðsÞd .

The root Fo� of Eq. (21) is given by the following
expression

Fo� ¼ 2c2 þ dPe� 2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ dPe

p
d2Pe2

: ð22Þ

Substituting Eq. (22) into Eq. (21) yields the dimensionless
height of the splat H ¼ h=d

H ¼ 1� dPeFo� ¼ 2cFo�1=2: ð23Þ

In preparation for using the obtained Eqs. (20)–(23), one
needs to evaluate the heat transfer coefficient bm and
kinetic coefficient K.

3. Convective heat transfer in the vicinity of a stagnation

point

To determine the heat transfer coefficient, now consider
the axisymmetric non-isothermic incompressible fluid flow
in the vicinity of a stagnation point. Since for metal melts
the Prandtl number is small ðPr ¼ 10�2–10�3Þ, the normal
component of the fluid velocity u could be taken from
the solution of inviscid stagnation flow impinging on a
solid surface:

u ¼ �2az: ð24Þ

According to [2], the coefficient a is

a ¼ U=ð2dÞ: ð25Þ
Then, the governing equation and boundary conditions
along the central line r ¼ 0 of the flow are described as
follows:

otT � 2azozT ¼ aozzT ; ð26Þ
T ðt;1Þ ¼ T ð0; zÞ ¼ T 1; T ðt; 0Þ ¼ T 2 ¼ constant: ð27Þ

Introducing the following dimensionless variables h ¼
ðT � T 1Þ=ðT 2 � T 1Þ, g ¼ zð2a=aÞ1=2

; s ¼ 2at, governing
equations (26) and (27) can be written as

osh� goggh ¼ oggh; ð28Þ
hðs;1Þ ¼ hð0; gÞ ¼ 0; hðs; 0Þ ¼ 1: ð29Þ

The problem (28) and (29) has the self-similar solution.
Introducing a new variable n ¼ g=f ðsÞ with unknown func-
tion f ðsÞ, Eq. (28) takes the form

d2h

dn2
þ nðff 0 þ f 2Þ dh

dn
¼ 0; ð30Þ

where f 0 � df =ds.
Equating the expression in brackets to unity yields the

explicit form of the function f:

f ðsÞ ¼ ½1� expð�2sÞ�1=2
: ð31Þ

The solution of the equation

d2h

dn2
þ n

dh
dn
¼ 0 ð32Þ

satisfying the boundary conditions hð1Þ ¼ 0 and hð0Þ ¼ 1,
reads

hðnÞ ¼ 1�
ffiffiffi
2

p

r Z n

0

exp � x2

2

� �
dx: ð33Þ

To find the instantaneous value of the Nusselt number
Nu ¼ bd=kðlÞd , it can be rewritten in the following form:

Nu ¼ qd

kðlÞd ðT 1 � T 2Þ
¼ d

T 1 � T 2

oT
oz

����
z¼0

; ð34Þ

where q ¼ kðlÞd ðoT=ozÞz¼0 is the magnitude of heat flux at the
interface melt/substrate.

Calculating the derivative ðoT=ozÞ at z ¼ 0 with
accounting for (31) and (33) yields

Nu ¼
ffiffiffiffiffiffi
4a
pa

r
d½1� expð�2sÞ��1=2

: ð35Þ

Furthermore, accounting for (25), Eq. (35) reads

Nu ¼
ffiffiffiffiffiffiffiffi
2Pe
p

r
½1� expð�2sÞ��1=2

: ð36Þ

Averaging (36) over the temporal scale d=U of the droplet
deformation that corresponds to the dimensionless time
s ¼ 1, finally yields

Num ¼ ð5:5Pe=pÞ1=2
; ð37Þ

bm ¼ ð5:5Pe=pÞ1=2kðlÞd =d: ð38Þ



Table 1
Experimental conditions and corresponding X-values, measured ðH expÞ
and calculated from equilibrium ðH eqÞ and non-equilibrium (Hn) models
values of the splat height

Drop-
substrate

d,
lm

U0,
m/s

T p0,
K

T s0,
K

H exp Hn H eq X

Al–Ag 180 30 933 673 0.068 0.068 0.086 0.18
Ag–Ag 162 30 1234 573 0.111 0.111 0.188 0.82
Cu–Ag 120 30 1356 573 0.083 0.082 0.14 1.12
Ni–Ag 80 30 1726 673 0.063 0.064 0.118 1.16

Table 2
Thermophysical properties of materials for solid and liquid states at
melting temperature

Material of
the droplet

qðsÞ=qðlÞ

(kg m�3)
cðsÞ=cðlÞ

(J kg�1 K�1)
kðsÞ=kðlÞ

(W m�1 K�1)
Tm

(K)
L

(kJ kg�1)

Al 2600/
2370

890/1095 220/88 933 397

Ag 9820/
9320

298/283 370/180 1234 105

Cu 8930/
8030

390/500 275/180 1356 205

Ni 8900/
7790

667/770 77/70 1728 298

Table 3
The kinetic properties of liquid metals from the literature

Melt Al Ag Cu Ni

da, 10�10 m 2.67 2.68 2.3 2.33
D0, 10�7 m2/s 2.0 0.9 0.8 1.8
E, 10�20 J/atom 4.15 5.13 6.6 10.9
La, 10�20 J/atom 1.75 1.87 2.15 2.95
K, m/(s K) 0.044 0.015 0.009 0.005
W ¼ E=kT m 3.222 3.011 3.525 4.611
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4. Results and discussion

The classical treatment of crystal continuous growth
leads to an expression for the velocity of spherical crystal
growth [17]

da
dt
¼ da

nhp

LV

T m

e�E=kT DT 1� ac

a

� �
; ð39Þ

where da is the effective diameter of atom (molecule), a is
the spherical crystal radius, E is the activation energy, LV

is the volumetric heat of melting, hp is the Planck constant,
k is the Boltzmann constant, n is the number of atoms
(molecules) per unit volume, DT ¼ T m � T is the melt
undercooling, Tm is the melting temperature, ac is the crit-
ical nucleus radius.

In case of ac � a and at low DT ðDT=T m � 1Þ, Eq. (39)
reads

v ¼ da=dt ¼ KDT ; ð40Þ
where K ¼ da

nhp

LV

T m
expð�E=kT mÞ is the kinetic coefficient.

It is convenient to rewrite the expression for the kinetic
coefficient in the following way:

K ¼ da

nhp

LV

T m

e�W ¼ d2
a

ðhp=kT mÞ
e�W La

dakT 2
m

; ð41Þ

where La ¼ LV=n is the latent heat of melting per one atom
(molecule), W ¼ E=kT m.

Introducing the designations DL ¼ D0e�W and D0 ¼
d2

a

ðhp=kT mÞ, the kinetic coefficient becomes

K ¼ DLLa

dakT 2
m

: ð42Þ

Thereby the expression (40) for the velocity of crystal
growth reduces to the Wilson–Frenkel form

v ¼ DLLa

dakT 2
m

DT : ð43Þ

The application of the developed model has been per-
formed based on the experimental data [18,19]. Separate
molten droplets were obtained by spraying a wire in an
independent arc plasma jet having a high-temperature,
small-size zone. The distance between the nozzle exit and
the substrate was chosen so that the droplets fell on a spec-
imen’s surface (polished up to D14 class of surface finish) in
a molten state at melting temperature. The temperature of
the heated substrate was controlled. The velocities of the
droplets before collision with substrate were close to
30 m/s.

Table 1 lists experimental data from [18,19] used in the
present study and the dimensionless values of the splat
height obtained from both equilibrium [2] ðH eq ¼ heq=dÞ
and non-equilibrium ðH n ¼ hn=dÞ models. As follows from
[11,13,17], the effect of nucleation delay can be neglected at
droplet impact parameters listed in Table 1.

The thermophysical and kinetic properties of the mate-
rials were taken from [7,14,20,21] (Tables 2 and 3). As
can be seen from Table 1, the experimental and calculated
non-equilibrium values of the dimensionless height practi-
cally coincide. The equilibrium values of the height remain
relatively close to the experimental ones (Al–Ag) only for
small values of X (X ¼ 0:18). At X ¼ 0:82 (Ag–Ag) the
error increases drastically and the equilibrium model fails
to describe the process of droplet solidification.

The excellent agreement of the splat thickness experi-
mental values and predicted ones from non-equilibrium
model allows one to suggest a method for the kinetic coef-
ficient and activation energy determination. Assuming the
value of H is known from the experiment, one can find suc-
cessively Fo� from the first equality (23), c from the second
one (23), X from (20), and ultimately K from (19).

Table 4 shows the comparison of predicted values of
kinetic coefficient Kcalc and dimensionless activation energy
W calc with those from literature. The predicted values of
activation energy W calc agree well with data from Table 3
and have a maximum deviation of 1.8% for Ni. The nickel
has the highest value of the activation energy (W ¼ 4:611)
which is in agreement with its inclination for amorphysa-
tion [12,13].



Table 4
Comparison of predicted values of kinetic coefficient and activation energy
and those from literature

Drop-substrate K, m s�1 Kcalc, m s�1 W W calc

Al–Ag 0.044 0.044 3.222 3.214
Ag–Ag 0.015 0.015 3.011 3.014
Cu–Ag 0.009 0.009 3.525 3.498
Ni–Ag 0.005 0.005 4.611 4.694
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5. Conclusions

The criterion X for predicting the scenario of a phase
transition for the molten metal droplets impacting on a
solid surface has been suggested. At X� 1, the phase tran-
sition proceeds as an equilibrium one. As X-value
increases, the equilibrium model fails to describe droplet
solidification. A model for non-equilibrium crystallization
of molten metal droplets impacting on a solid substrate
has also been developed. An analytical solution of the
model relates the splat thickness to the kinetic coefficient
of the molten high-melting metals. This offers a new
method for measuring the kinetic coefficient and activation
energy of molten metals by means of splat thickness mea-
surement of molten metal droplets deposited on a polished
specimen surface.
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